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Abstract 13 

Due to the potential for land use / land cover change (LULCC) to alter surface albedo, there is 14 

need within the LULCC science community for simple and transparent tools for predicting 15 

radiative forcings ( F ) from surface albedo changes ( s ).  To that end, the radiative kernel 16 

technique – developed by the climate modeling community to diagnose internal feedbacks 17 

within general circulation models (GCMs) – has been adopted by the LULCC science 18 

community as a tool to perform offline F calculations for s .  However, the GCM codes 19 

are not readily transparent and the atmospheric state variables used as model input are limited 20 

to single years, thus being sensitive to anomalous weather conditions that may have occurred 21 

in those simulated years.   Observation-based kernels founded on longer-term climatologies of 22 

Earth’s atmospheric state offer an attractive alternative to GCM-based kernels and could be 23 

updated annually at relatively low costs.  Here, we evaluate simplified models of shortwave 24 

radiative transfer as candidates for an albedo change kernel founded on the Clouds and the 25 
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Earth’s Radiant Energy System (CERES) Energy Balance and Filled (EBAF) products.  We 26 

find that a new, simple model supported by statistical analyses gives remarkable agreement 27 

when benchmarked to the mean of four GCM kernels and to two GCM kernels following 28 

emulation with their own boundary fluxes as input.  Our findings lend support to its candidacy 29 

as a satellite-based alternative to GCM kernels and to its application in land-climate studies. 30 

 31 

1. Introduction 32 

Diagnosing changes to the shortwave radiation balance at the top-of-the-atmosphere (TOA) 33 

resulting from changes to albedo at the surface ( s ) is an important step in predicting 34 

climate change.  However, outside the climate science community, many researchers do not 35 

have the tools to convert  to the climate-relevant F  measure (Bright, 2015;Jones et al., 36 

2015), which requires a detailed representation of the atmospheric constituents that absorb or 37 

scatter solar radiation (e.g. cloud, aerosols, and gases) and a sophisticated radiative transfer 38 

code.  For single points in space or for small regions, these calculations are typically 39 

performed offline – meaning without feedbacks to the atmosphere (e.g., (Randerson et al. 40 

2006)).  Large-scale investigations (e.g. Amazonian or pan-boreal LULCC (Dickinson and 41 

Henderson-Sellers, 1988;Bonan et al., 1992)) typically prescribe the land surface layer in a 42 

GCM with initial and perturbed states, allowing the radiative transfer code to interact with the 43 

rest of the model.  While this has the benefit of allowing interaction and feedbacks between 44 

surface albedo and scattering or absorbing components of the model, such an approach is 45 

computationally expensive and thereby restricts the number of LULCC scenarios that can be 46 

investigated (Atwood et al., 2016).  Consequently, this method does not meet the needs of 47 

some modern LULCC studies which may require millions of individual land cover transitions 48 

to be evaluated cost effectively (Lutz and Howarth, 2015;Ghimire et al., 2014).   49 

 50 
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Within the LULCC science community, two methods have primarily met the need for 51 

efficient F calculations from s :  simplified parameterizations of atmospheric transfer of 52 

shortwave radiation (Bright and Kvalevåg, 2013;Cherubini et al., 2012;Bozzi et al., 53 

2015;Muñoz et al., 2010;Caiazzo et al., 2014;Carrer et al., 2018), and radiative kernels 54 

(Ghimire et al., 2014;O'Halloran et al., 2012;Vanderhoof et al., 2013) derived from 55 

sophisticated radiative transfer schemes embedded in GCMs (Soden et al., 2008;Shell et al., 56 

2008;Pendergrass et al., 2018;Block and Mauritsen, 2014).  Simplified parameterizations of 57 

the LULCC science community have not been evaluated comprehensively in space and time.  58 

Bright & Kvalevåg (2013) evaluated the shortwave F  parameterization of Cherubini et al. 59 

(2012) when applied at several sites distributed globally on land, finding inconsistencies in 60 

performance at individual sites despite good overall cross-site performance.  Radiative kernels 61 

(Soden et al., 2008;Shell et al., 2008;Pendergrass et al., 2018;Block and Mauritsen, 62 

2014;Smith et al.) – while being based on state-of-the-art models of radiative transfer – have 63 

the downside of being model-dependent and not readily transparent.  While the radiative 64 

transfer codes behind them are well-documented, the scattering components (i.e. aerosols, 65 

gases, and clouds) affecting transmission have many simplifying parameterizations, vary 66 

widely across models, and may contain significant biases (Dolinar et al., 2015;Wang and Su, 67 

2013).  An additional downside is the that atmospheric state variables used as model input are 68 

limited to single years, thus being sensitive to anomalous weather conditions that may have 69 

occurred in those years.  Further, the application of a state-dependent GCM kernel may be 70 

undesirable in regions undergoing rapid changes in cloud cover or aerosol optical depth, such 71 

as in the northwest United States (Free and Sun, 2014) and in southern and eastern Asia (Zhao 72 

et al., 2018;Srivastava, 2017), respectively.  A kernel based on remotely-sensed observations 73 

could be updated annually to capture changes in atmospheric state at relatively low costs. 74 

 75 
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Within the atmospheric science community, simplified radiative transfer frameworks have 76 

been developed, either to diagnose effective surface and atmospheric optical properties from 77 

climate model outputs, or to study the relative contributions of changes to these properties on 78 

shortwave flux changes at the top and bottom of the atmosphere (Rasool and Schneider, 79 

1971;Winton, 2005;Winton, 2006;Taylor et al., 2007;Donohoe and Battisti, 2011;Atwood et 80 

al., 2016;Kashimura et al., 2017;Qu and Hall, 2006).   These frameworks differ by whether or 81 

not the reflection and transmission properties of the atmospheric layer are assumed to have a 82 

directional dependency (Stephens et al., 2015) and by the number of variables required as 83 

input (Qu and Hall, 2006).  Winton (2005) presented a four-parameter optical model to 84 

account for the directional dependency of up- and downwelling shortwave fluxes through a 85 

one-layer atmosphere and found good agreement (RMSE < 2% globally) when benchmarked 86 

to online radiative transfer calculations.  Also considering a directional dependency of the 87 

atmospheric optical properties, Taylor et al. (2007) presented a two-parameter model where 88 

atmospheric absorption was assumed to occur at a level above atmospheric reflection.  89 

Donohoe and Battisti (2011) subsequently relaxed the directional dependency assumption and 90 

found the atmospheric attenuation of the surface albedo contribution to planetary albedo to be 91 

8% higher than the model of Taylor et al. (2007).  Elsewhere, Qu & Hall (2006) developed a 92 

framework making use of additional known atmospheric properties such as cloud cover 93 

fraction, cloud optical thickness, and the clear-sky planetary albedo which proved highly 94 

accurate when model estimates of planetary albedo were evaluated against climate models 95 

and satellite-based datasets.   96 

Here, our primary research objective is to thoroughly evaluate a variety of shortwave kernels 97 

derived both analytically and statistically from satellite-based climatologies of Earth’s 98 

shortwave radiation budget.  To this end, we employ a 16-yr. time series of Earth’s monthly 99 

mean radiation budget at both TOA (Loeb et al., 2017) and at the surface (Kato et al., 2012) 100 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-15
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 26 February 2019
c© Author(s) 2019. CC BY 4.0 License.



5 
 

as input to simplified models linking s  to changes in the outgoing shortwave radiation flux 101 

at TOA.  An initial performance screening is implemented where the six observation-driven 102 

kernels are first assessed both qualitatively and quantitatively against the mean of four GCM 103 

kernels (Shell et al., 2008;Soden et al., 2008;Pendergrass et al., 2018;Block and Mauritsen, 104 

2014).  Top performers are then subjected to a more rigorous evaluation where they are 105 

applied to emulate the GCM kernels using the GCM’s own boundary fluxes as input, which 106 

eliminates any bias related to differences in the GCM representation of clouds or other 107 

atmosphere state variables.  Our results elucidate the merits and uncertainties of empirical 108 

alternatives to those based on GCMs.   109 

 110 

We start in Section 2 by introducing the satellite-based energy balance product and the 111 

variables derived from them utilized in this study.  We then provide a brief overview of the 112 

GCM-based kernels and of the methods currently being applied within the LULCC science 113 

community to estimate instantaneous radiative forcings from surface albedo change.  Section 114 

3 details the methods applied to derive candidate GCM kernel alternatives from the radiative 115 

fluxes at Earth’s upper and lower boundaries.  We then present results of a comparative 116 

analysis in Section 4 and conclude with a brief discussion surrounding the merits and 117 

uncertainties of albedo change kernels based on satellite remote sensing.   118 

 119 

2 Review of existing approaches  120 

The NASA Clouds and the Earth’s Radiant Energy System (CERES) Energy Balance and 121 

Filled (EBAF) products provide the monthly mean boundary fluxes and atmospheric state 122 

information necessary to derive our GCM kernel alternatives (CERES Science Team, 2018a, 123 

b).  The latest EBAF-TOA Ed4.0 (version 4.0) products have many improvements with 124 

respect to the previous version (version 2.8, Loeb et al. 2009), including the use of advanced 125 
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and more consistent input data, retrieval of cloud properties, and instrument calibration (Loeb 126 

et al. 2018).  The temporal extent of the EBAF dataset employed in our analysis spans the 127 

sixteen full calendar years from January 1, 2001 to December 31, 2016 (retrieved April, 128 

2018).  An overview of all CERES inputs used in our analysis is presented in Table 1. 129 

 130 

< Table 1 > 131 

 132 

a. Shortwave F from s  133 

Earth’s energy balance (at TOA) in an equilibrium state can be written: 134 

0 ( )TOA TOA TOAF LW SW SW
  

= = − −                                                                                          (1) 135 

where the equilibrium flux F is a balance between the net solar energy inputs (136 

TOA TOASW SW
 

− ) and thermal energy output ( TOALW


).  Perturbing this balance results in a 137 

radiative forcing ΔF, while perturbing the shortwave component is referred to as a shortwave 138 

radiative forcing and may be written as:  139 

( ) 1
TOA TOA

TOA TOA TOA TOA

TOA TOA

SW SW
F SW SW SW SW

SW SW
 

   

 

   
 =  − =  − −       

   
                                 (2) 140 

where the shortwave radiative forcing results either from changes to solar energy inputs (141 

TOASW


 ) or from internal perturbations  within the Earth system (

TOA

TOA

SW

SW




 ).  The latter can 142 

be brought about by changes to the reflective properties of Earth’s surface and/or atmosphere 143 

which is the focus in this paper. 144 

b. GCM-based radiative kernels 145 
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The radiative kernel technique was developed as a way to assess various climate feedbacks 146 

from climate change simulations across multiple climate models in a computationally efficient 147 

manner (Shell et al., 2008;Soden et al., 2008).  A radiative kernel is defined as the differential 148 

response of an outgoing radiation flux at TOA to an incremental change in some climate 149 

feedback variable -- such as water vapor, air temperature, or surface albedo (Soden et al., 150 

2008).  To generate a radiative kernel for a change in surface albedo   with a GCM, the 151 

prescribed surface albedo is perturbed incrementally by 1% and the response by 
TOASW


is 152 

recorded, which can be expressed as: 153 

( ) ( )

TOA

TOA TOA TOA

s s s s

s

SW
SW SW SW K    




  


 = +  − =   


                                     (3) 154 

where K  is the radiative kernel (in Wm-2).  The albedo change kernel can then be used with 155 

Eq. (1) to estimate an instantaneous shortwave radiative forcing ( F ) at TOA: 156 

( )
s

s

TOA TOA TOAF F LW SW SW K

F K









  
+ = − − + 

 = − 
                                                                       (4) 157 

c. Simple kernel parameterizations of the LULCC science community 158 

Two simplified parameterizations of shortwave radiative transfer have been applied within the 159 

LULCC science community for estimating F  from s (Muñoz et al., 2010;Lutz et al., 160 

2015;Bozzi et al., 2015;Caiazzo et al., 2014;Cherubini et al., 2012;Carrer et al., 2018).  At the 161 

core of these parameterizations is the fundamental assumption that radiative transfer is wholly 162 

independent of (or unaffected by) s .  In other words, they neglect the change in the 163 

attenuating effect of multiple reflections between the surface and the atmosphere that 164 

accompanies a surface albedo change.  Although not referred to as “kernels” in the literature, 165 

we present them as such to ensure consistency in notation and terminology henceforth.  These 166 

are subsequently included in the kernel evaluation exercise presented in Section 4. 167 
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 168 

The first simplified kernel presented in Muñoz et al. (2010) makes use of a local two-way 169 

transmittance factor based on the local clearness index (defined in Table 1): 170 

10 2

TOA

M TOA

s s s

s

SW
K SW T  







   = 


                                                                                (5) 171 

where 
TOASW


 is the local incoming solar flux at TOA, T is the local clearness index, and 172 

TOASW 


   is the approximated change in the upwelling shortwave flux at TOA due  to a 173 

change in albedo at the surface.   174 

 175 

The second simplified kernel proposed in Cherubini et al. (2012) makes direct use of the solar 176 

flux incident at the surface 
SFCSW


 combined with a one-way transmission constant k: 177 

12

TOA

C SFC

s s s

s

SW
K SW k  







   = 


                                                                                 (6) 178 

where k is based on the global annual mean share of surface reflected shortwave radiation 179 

exiting a clear-sky (Lacis and Hansen, 1974;Lenton and Vaughan, 2009) and is hence 180 

temporally and spatially invariant.  This value – or 0.85 -- is similar to the global mean ratio 181 

of forward-to-total shortwave scattering reported in Iqbal (1983).   Bright & Kvalevåg (2013) 182 

evaluated Eq. (6) at several locations and found large biases for some regions and months, 183 

despite good overall performance globally (normalized RMSE = 7%; n = 120 months). 184 

 185 

3. Methods 186 

Simple analytical models developed by the climate science community treat the atmosphere 187 

as a single layer having various optical properties.  These models vary by the number and type 188 

of optical properties included, whether these have a directional dependency (i.e., isotropic or 189 
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anisotropic), or whether inputs other than those derived from the boundary fluxes are required 190 

(i.e., cloud properties).  These models are adapted here to derive kernels analytically for s . 191 

a. CERES isotropic kernel 192 

The surface contribution to the outgoing shortwave flux at TOA 
,

TOA

SFC
SW


 is given (Stephens et 193 

al., 2015;Donohoe and Battisti, 2011;Winton, 2005) as: 194 

( )
2

,

1

(1 )

TOA TOA

sSFC

s

r a
SW SW

r


 

− −
=

−
                                                                                               (7) 195 

where r is a single pass atmospheric reflection coefficient, a is a single pass atmospheric 196 

absorption coefficient, TOASW


 is the extraterrestrial (downwelling) shortwave flux at TOA, 197 

and s  is the surface albedo (defined in Table 1).   The expression in the denominator of the 198 

righthand term represents a fraction attenuated by multiple reflections between the surface 199 

and the atmosphere.  This model assumes that the atmospheric optical properties r and a are 200 

insensitive to the origin and direction of shortwave fluxes – or in other words – that they are 201 

isotropic. 202 

The single-pass reflectance coefficient is calculated from the system boundary fluxes (Table 203 

1) following Winton (2005) and Kashimura et al. (2017): 204 

 2  2

TOA TOA SFC SFC

TOA SFC

SW SW SW SW
r

SW SW
   

 

−
=

−
                                                                                           (8) 205 

while the single-pass absorption coefficient a is given as: 206 

1 (1 )sa r T r= − − −                                                                                                                 (9) 207 
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where T is the clearness index defined in Table 1.  Our interest is in quantifying the 
,

TOA

SFC
SW


 208 

response to an albedo perturbation at the surface – or the partial derivative of 
,

TOA

SFC
SW


 with 209 

respect to   in Eq. (7):     210 

2

2

(1 )

(1 )s

TOA TOA

ISO

s s s

s s

SW SW r a
K

r
  

 
 

 − −
 =  = 

 −
                                                                   (10) 211 

where 
s

ISOK  is referred to henceforth as the CERES isotropic kernel.  212 

 213 

b. CERES anisotropic kernel  214 

The second kernel makes use of three directionally-dependent (anisotropic) bulk optical 215 

properties  r

, t


, and t


, where the first is the atmospheric reflectivity to upwelling 216 

shortwave radiation and the latter two are the atmospheric transmission coefficients for 217 

upwelling and downwelling shortwave radiation, respectively (Winton, 2005).  It is not 218 

possible to derive r

 analytically from the CERES all-sky boundary fluxes; however, Winton 219 

(2005) provides an empirical formula relating upwelling reflectivity r


 to the ratio of all-sky 220 

to clear-sky fluxes incident at surface: 221 

,

0.05 0.85 1
SFC

SFC

CLR

SW
r

SW






 
= + − 

 
 

                                                                                                 (11) 222 

where 
,

SFC

CLR
SW


 is the clear-sky shortwave flux incident at the surface.   223 

Knowing r

, we can then solve for the two remaining optical parameters needed to derive our 224 

kernel: 225 

SFC SFC

TOA

SW r SW
t

SW
  





−
=                                                                                                            (11) 226 
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(1 )a st T t t r
   
= − − −                                                                                                         (12) 227 

where aT  is the effective atmospheric transmittance (Table 1) of the earth system. 228 

The anisotropic kernel 
s

ANISOK can now be derived as: 229 

2(1 )s

TOA TOA

ANISO

s s s

s s

SW SW t t
K

r
  

 
   




 =  = 

 −
                                                                           (13) 230 

 231 

c. CERES auxiliary input kernel  232 

Qu and Hall (2006) developed an alternative analytical kernel to the two described above.  233 

The model makes use of auxiliary cloud property information commonly provided in satellite-234 

based products of Earth’s radiation budget – including CERES EBAF – such as cloud cover 235 

area fraction, cloud visible optical depth, and clear-sky planetary albedo.  The model links all-236 

sky and clear-sky effective atmospheric transmissivities of the earth system through a linear 237 

coefficient k relating the logarithm of cloud visible optical depth to the effective all-sky 238 

atmospheric transmissivity: 239 

,( ) ( )

ln( 1)

a CLR aT T
k



−
=

+
                                                                                                                   (14) 240 

where ,a CLRT is the clear-sky effective system transmissivity, aT is the all-sky effective system 241 

transmissivity, and   is the cloud visible optical depth.  This linear coefficient can then be 242 

used together with the cloud cover area fraction to derive a shortwave kernel based on the 243 

model of Qu and Hall (2006) – or 06

s

QHK : 244 

 06 ( ) ln( 1)
s

TOA

QH SFC

s s a s

s

SW
K SW T kc   







 =  = − + 


                                                    (15) 245 

where c is the cloud cover area fraction. 246 
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d. CERES statistical kernel  247 

To determine whether the GCM-based kernels could be approximated with sufficient fidelity 248 

using even simpler model formulations based on the CERES boundary data, we applied 249 

machine learning to identify potential model forms using the CERES EBAF all-sky boundary 250 

fluxes (or system parameters derived from these fluxes) that minimized the sum of squared 251 

residuals between monthly means of four GCM-based kernels (described below) and model 252 

estimates.  The reference dataset consisted of a random global sample of 50,000 (~50%) 2.8° 253 

x 2.8° grid cells, from the multi-GMC mean, of which 50% were used for training and 50% 254 

for validation.  Models were identified using a form of genetic programming known as 255 

symbolic regression (Eureqa®; Nutonian Inc.; (Schmidt and Lipson, 2009, 2010)) which 256 

searches for both optimal model structure and coefficients.  A parsimonious solution was 257 

chosen by minimizing the error metric and model complexity using the Pareto front (Smits 258 

and Kotanchek, 2005).  Based on the mean squared deviation (MSD) and Akaike’s 259 

information criterion (AIC), the best model form of the statistical kernel – subsequently 260 

referred to as 18

s

BOK  -- is given as: 261 

18

s

TOA

BO SFC

s s s

s

SW
K SW T  







 =  = 


                                                                            (16) 262 

d. Initial screening of candidate models for a CERES-based kernel 263 

Four GCM kernels are employed as benchmarks to initially screen the six CERES-based 264 

kernel model candidates:  the Community Atmosphere Model version 3, or CAM3 (Shell et 265 

al., 2008), the Community Atmosphere Model version 5, or CAM5 (Pendergrass et al., 2018), 266 

the European Center and Hamburg model version 6, or ECHAM6 (Block and Mauritsen, 267 

2014), and the Geophysical Fluid Dynamics Laboratory model version AM2p12b, or GFDL 268 

(Soden et al., 2008).  The four GCM kernels vary in vertical and horizontal resolution, 269 
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parameterization of shortwave radiative transfer, and year of atmospheric state (input 270 

variables).    271 

 272 

We compute a skill metric analogous to the “relative error” metric used to evaluate GCMs by 273 

Anav et al. (2013) that takes into account error in the spatial pattern between a model and an 274 

observation.  Because we have no true observational reference, our evaluation instead focuses 275 

on the disagreement or deviation between CERES and GCM kernels at the monthly time step.  276 

Given interannual climate variability in the earth system, the challenge of comparing the 277 

multi-year CERES kernel to a single-year GCM kernel can be partially overcome by 278 

averaging the four GCM kernels.    279 

 280 

Using the multi-GCM mean as the reference, we first compute the absolute deviation
,

X

m pAD  281 

as: 282 

 ,, ,

X X
m pm p m pAD CERES GCM= −                                                                                           (17) 283 

where 
,

X

m pCERES  is the kernel for CERES model X in month m and pixel p and ,m pGCM  is 284 

the multi-GCM mean of the same pixel and month.  
,

X

m pAD  is then normalized to the 285 

maximum absolute deviation of all six CERES kernels for the same pixel and month to obtain 286 

a normalized absolute deviation, 
,

X

m pNAD , which is analogous to the “relative error” metric of 287 

Anav et al. (2013) with values ranging between 0 and 1: 288 

,

,

,

1
max( )

X

m pX

m p

m p

AD
NAD

AD
= −                                                                                                     (18) 289 

where ,max( )m pAD  is the maximum absolute deviation of all six CERES kernels at pixel p 290 

and month m.   291 
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 292 

CERES kernel ranking is based on the mean relative absolute deviation in both space and time 293 

– or
X

NAD : 294 

,

1 1

1 1M PX
X

m p

m p

NAD NAD
M P= =

=                                                                                                   (19) 295 

where M is the total number of months (i.e., 12) and P is the total number of grid cells.   296 

 297 

e. GCM kernel emulation 298 

In order to eliminate any bias related to differences in the atmospheric state embedded in the 299 

GCM and CERES-derived kernels, we re-compute our simple kernels using the same 300 

shortwave boundary fluxes used to compute the two most recent albedo change kernels based 301 

on ECHAM6 (Block and Mauritsen, 2014) and CAM5 (Pendergrass et al., 2018).  This 302 

enables a more critical evaluation of the functional form of the simple models in relation to 303 

the more sophisticated radiative transfer schemes employed by ECHAM6 (Stevens et al., 304 

2013) and CAM5 (Hurrell et al., 2013). 305 

 306 

4. Results 307 

a. Initial kernel performance screening  308 

Seasonally, differences in latitude band means between the CERES and multi-GCM mean 309 

kernels are shown in Figure 1. 310 

 311 

< Figure 1 > 312 

 313 
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Qualitatively, starting with December-January-February (DJF), 
18BOK gives the best 314 

agreement with GCMK
 with the exception of the zone around 55 – 65°S (-55 – -65°), where 315 

06QHK gives slightly better agreement (Fig. 1A).  In March-April-May (MAM), 
18BOK  appears 316 

to give the best overall agreement with the exception of the high Arctic, where 
ANISOK  and 317 

12CK give better agreement, and with the exception of the zone around 60 – 65°S (-60 – -65°) 318 

where 
06QHK , 

ANISOK , and 
12CK agree best with GCMK

 (Fig. 1B).  The largest spread in 319 

disagreement across all six CERES kernels is found in June-July-August (JJA; Fig. 1C) at 320 

northern high latitudes.  
18BOK appears to agree best both here and elsewhere with the 321 

exception of the zone between ~20 – 35°N, where  
06QHK  gives slightly better agreement. 322 

In September-October-November (SON), 
18BOK  agrees best with GCMK

 at all latitudes except 323 

the zone between 10 – 25°N and 55 – 65°S where 
06QHK agrees slightly better. 324 

 325 

Quantitatively, the proportion of the total variance explained by linear regressions of monthly 326 

GCMK
on monthly 

CERESK  (i.e., R2) is highest and equal for the CERES kernels based on the 327 

ANISO, QH06, and BO18 models (Fig. 2 B, C, & D).  Of these three, 
06QHK has a y-intercept 328 

(B0) closest to 0 and a slope (m) of 1, although the root mean squared deviation (RMSD) – an 329 

accuracy measure – is slightly better (lower) for 
18BOK .  The two CERES kernels with the 330 

lowest R2, highest slopes (negative deviations), highest RMSDs, and y-intercepts with the 331 

largest absolute difference from zero are those based on the ISO and M10 models (Fig. 2 332 

A&E). 333 

 334 

< Figure 2 > 335 

 336 
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Although the y-intercept deviation from 0 for 
12CK  is relatively low, its RMSD is ~50% 337 

higher than that of 
06QHK , 

18BOK , and 
ANISOK  and  leads to notable positive deviation from the 338 

multi-GCM mean ( GCMK
) judging by its slope of 0.92. 339 

 340 

c. Normalized absolute deviation  341 

Globally, 
X

NAD  for the QH06, ANISO, and BO18 kernels are far superior to the ISO, M10, 342 

and C12 kernels (Table 2). 343 

 344 

< Table 2 > 345 

 346 

After filtering to remove grid cells for oceans and other water bodies, 
X

NAD  scores for these 347 

three kernels decreased; the decrease was smallest for
18BOK (-0.03) and largest for 

06QHK  (-348 

0.06).  Despite constraining the analysis to land surfaces only, the rank order remained 349 

unchanged (Table 2). 350 

 351 

d. GCM kernel emulation and additional performance screening 352 

Because the simple kernel based on the QH06 model (
06QHK ) required auxiliary inputs for 353 

cloud cover area fraction and cloud optical depth – two atmospheric state variables not 354 

provided with the ECHAM6 and CAM5 kernel datasets – it was not possible to emulate these 355 

two GCM kernels using the QH06 model.   Additional performance evaluation through GCM 356 

kernel emulation is therefore restricted to the ANISO and BO18 models.   357 

< Figure 3 > 358 
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Globally, the kernel based on the ANISO model displays larger annual mean biases relative to 359 

BO18 when compared to both ECHAM6 and CAM5 kernels (Figure 3).  Notable positive 360 

biases over land with respect to both ECHAM6 and CAM5 kernels are evident in the northern 361 

Andes region of South America, the Tibetan plateau, and the tropical island region comprising 362 

Indonesia, Malaysia, and Papua New Guinea (Fig. 3 A & C).  Notable negative biases over 363 

land with respect to both ECHAM6 and CAM5 kernels are evident over Greenland, 364 

Antarctica, northeastern Africa, and the Arabian Peninsula (Fig. 3 A & C). 365 

< Figure 4 > 366 

Globally, annual biases for BO18 are generally found to be lower than for ANISO and are 367 

mostly non-existent in extra-tropical ocean regions (Fig. 3 B & D).  Patterns in biases over 368 

land are mostly negative with the exception of Saharan Africa where the annual mean bias 369 

with respect to both GCMs is positive. For BO18, systematic positive biases – or biases 370 

evident with respect to both GCM kernels – appear over eastern tropical and subtropical 371 

marine coastal upwelling zones where marine stratocumulus cloud dynamics are difficult for 372 

GCMs to resolve (Bretherton et al., 2004;Richter, 2015). 373 

< Table 3 > 374 

Performance metrics based on regressing monthly kernels from the two GCMs on kernels 375 

emulated with both ANISO and BO18 models indicate a greater overall accuracy (or 376 

agreement) for BO18 (Figure 4).  RMSDs for monthly kernels emulated with BO18 are 9.0 377 

and 8.2 W m-2 with respect to CAM5 and ECHAM6, respectively – which is ~50-60% of the 378 

RMSDs emulated with the ANISO model.  Focusing henceforth only on the kernel emulated 379 

with BO18 model, negative biases are evident in all months (Table 3), with the largest biases 380 

(in magnitude) appearing in May (-4.4 W m-2) and November (-2.5 W m-2) for CAM5 and 381 

ECHAM6, respectively.  In absolute terms, largest biases of 8.6 W m-2 and 6.8 W m-2 appear 382 
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in June for CAM5 and ECHAM6, respectively.  Annually, the mean absolute bias for CAM5 383 

and ECHAM6 is 6.8 and 6.1 W m-2, respectively – a magnitude which seems remarkably low 384 

if one compares this to the annual mean disagreement (standard deviation) of 33 W m-2 across 385 

all four GCM kernels (not shown). 386 

 387 

5. Discussion and conclusions  388 

Motivated by an increasing abundance of climate impact research focusing on land processes 389 

in recent years, we comprehensively evaluated six simplified models linking shortwave 390 

radiative flux perturbations at TOA with surface albedo changes at the surface.  Relative to 391 

albedo change kernels based on sophisticated radiative transfer schemes embedded in GCMs, 392 

the simplified models evaluated here can be updated frequently at relatively low cost using 393 

boundary fluxes obtained from remote sensing-based products of Earth’s shortwave energy 394 

budget.  This allows greater flexibility to meet the needs of research that focuses on longer-395 

term albedo trends or regions currently undergoing rapid change in atmospheric composition.  396 

Although some modeling groups have provided recent updates to radiative kernels using the 397 

latest GCM versions, the atmospheric state of the boundary conditions used to derive them 398 

may be considered outdated or not in sync with that required for some applications.  399 

 400 

Based on both qualitative and quantitative benchmarking against the mean of four GCM 401 

kernels, the simple model derived from machine learning, BO18, together with the two 402 

analytically derived models, QH06 and ANISO, proved far superior to the M10, C12, and  the 403 

ISO kernel models.  When subjected to additional performance evaluation, however, we 404 

found that the BO18 model was able to more robustly emulate the ECHAM6 and CAM5 405 

kernels with exceptionally high accuracy, suggesting that this model can serve as a suitable 406 

candidate for an albedo change kernel based on CERES boundary fluxes.  The RMSD of this 407 
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kernel – henceforth referred to as the CERES Albedo Change Kernel (CACK v1.0) – was 408 

found to be 6.8 and 6.1 W m-2 when benchmarked to the CAM5 and ECHAM6 kernel, 409 

respectively – a magnitude which is only ~20% of the standard deviation found across four 410 

GCM kernels (annual mean).  CACK’s remarkable simplicity lends support to the idea of 411 

using machine learning to explore and detect emergent properties of shortwave radiative 412 

transfer in future research. 413 

 414 

Despite the stronger empirical foundation of CACK over a GCM-based kernel, it is important 415 

to recognize its limitations.  Firstly, the monthly CERES EBAF-Surface product used to 416 

define lower atmospheric boundary conditions is not strictly an observation.  The space-borne 417 

observation platform is not able to directly observe Earth’s surface fluxes under overcast 418 

conditions and hence requires model augmentation.  However, the energy-balancing step 419 

ensures that fluxes are adjusted to match the observed rate of heat accumulation in the climate 420 

system (i.e., the oceans) (Hansen et al., 2005).  These processes, as well as extensive ground 421 

validation and testing, are documented elsewhere (Kato et al., 2013;Loeb et al., 2009).  422 

Further, while CACK has a finer spatial resolution than most GCM kernels, it still represents 423 

a spatially averaged response rather than a truly local response; in other words, the state 424 

variables used to define the response are tied to the course spatial (i.e., 1° x 1°) resolution of 425 

the CERES EBAF product grids.  Lastly, it is important to emphasize that CACK is based on 426 

the climate conditions of the present day (2001-2016); hence, caution should be exercised 427 

when applying it to estimate F associated with albedo changes occurring outside this range. 428 

 429 

To conclude, we evaluated six simplified albedo change kernels based on CERES shortwave 430 

boundary fluxes as candidate alternatives to GCM-based albedo change kernels.   Albedo 431 

change kernels are useful tools for estimating instantaneous shortwave radiative forcings 432 
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connected to anthropogenic land use activities.  Our results showed that the BO18 model 433 

developed and presented in this study is the best candidate for a CERES albedo change kernel 434 

-- or CACK.   CACK provides a higher spatial resolution, higher transparency alternative to 435 

existing kernels based on GCMs.  CACK could be easily applied as part of Monitoring, 436 

Reporting, and Verification (MRV) frameworks for biogeophysical impacts on land, 437 

analogous to those which currently exist for land sector greenhouse gas emissions.  Given the 438 

extensive time span of the CERES EBAF products, CACK based on a multi-year climatology 439 

of Earth’s shortwave radiation budget would better-account for internal climate variability in 440 

the earth system.  However, CACK’s flexibility regarding input year should make it broadly 441 

appealing across a range of disciplines.  One example is the land-based solar radiation 442 

management (SRM) research community who frequently calculate F from  to evaluate 443 

climate mitigation strategies (Ridgwell et al., 2009;Seneviratne et al., 2018;Akbari et al., 444 

2009).    445 

 446 

Code Availability 447 

An open source Octave (Eaton et al., 2018) script file for generating monthly CACK from 448 

CERES EBAF data and example input files are included as a Supplement.  The script also 449 

demonstrates calculating a TOA RF from CACK and monthly surface albedo perturbation at a 450 

user-specified location.   451 

 452 

Data Availability 453 

CERES EBAF data are available for download at:  454 

https://ceres.larc.nasa.gov/products.php?product=EBAF-TOA .  The CAM3 kernel is 455 

available at:  http://people.oregonstate.edu/~shellk/kernel.html .  The CAM5 kernel is 456 

available at:  https://www.earthsystemgrid.org/ac/guest/secure/sso.html . The ECHAM5 457 
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kernel is available at:  https://swiftbrowser.dkrz.de/public/dkrz_0c07783a-0bdc-4d5e-9f3b-458 

c1b86fac060d/Radiative_kernels/ .   459 
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Table 1.  Definition of CERES input variables and other system optical properties derived 688 

from CERES inputs.  All variables are 2001-2016 monthly means at 1° × 1° spatial resolution.   689 

CERES EBAF v.4 Shortwave Boundary Fluxes 

TOASW


 Downwelling solar flux at top-of-atmosphere  Wm-2 

SFCSW


 Downwelling solar flux at surface Wm-2 

,

SFC

CLR
SW


 Clear-sky downwelling solar flux at surface Wm-2 

TOASW


 Upwelling solar flux at top-of-atmosphere Wm-2 

SFCSW


 Upwelling solar flux at surface Wm-2 

System Optical Properties 

SFC TOAT SW SW
 

=  Clearness index unitless 

TOA TOA

p SW SW
 

=  Planetary albedo unitless 

SFC SFC

s SW SW
 

=  Surface albedo unitless 

1p pA = −  Effective planetary absorption unitless 

SFC SFC TOA

sA SW SW SW
  

 = −   Effective surface absorption unitless 

a p sA A A= −  Effective atmospheric absorption unitless 

1a aT A= −  Effective atmospheric transmission unitless 

, ,1a CLR a CLRT A= −  Clear-sky effective atmospheric transmission unitless 

  Cloud visible optical depth unitless 

c  Cloud area fraction fraction 
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Table 2.  Normalized absolute deviation and CERES kernel ranking. 692 

 Global Land only  

 NAD  Rank NAD  Rank Mean Rank 

ISO 0.05 6 0.05 6 6 

ANISO 0.64 3 0.59 3 3 

C12 0.45 4 0.47 4 4 

M10 0.26 5 0.34 5 5 

QH06 0.66 2 0.60 2 2 

BO18 0.67 1 0.64 1 1 

 693 

  694 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-15
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 26 February 2019
c© Author(s) 2019. CC BY 4.0 License.



28 
 

Table 3.  Global monthly mean bias (MB) and mean absolute bias (MAB) for 
18BOK  emulated 

with T and SFCSW


 from ECHAM6 and CAM5. For reference, the global mean value of 
18BOK  

is 133 W m-2. 

 MB (W m-2) 

 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Ann. 

18 5BO CAMK K −  -2.9 -3.4 -3.3 -3.9 -4.4 -3.8 -3.8 -3.7 -3.4 -3.8 -3.7 -3.3 -3.6 

18 6BO ECHAMK K −  -1.9 -2.2 -1.8 -1.9 -2.2 -1.5 -1.1 -1.6 -1.7 -2.5 -2.5 -1.8 -1.9 

MAB (W m-2) 

 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Ann. 

18 5| |BO CAMK K −  6.9 5.7 5.2 6.8 7.7 8.6 7.9 6.7 5.6 6.1 6.9 6.9 6.8 

18 6| |BO ECHAMK K −  6.3 5.7 5.0 5.9 6.7 6.8 6.4 5.8 5.3 5.6 6.4 6.7 6.1 
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 696 

Figure 1.  Latitudinal (1°) and seasonal means of GCMK
 and 

CERESK for:  A) December-697 

January-February (DJF); B) March-April-May (MAM); C) June-July-August (JJA); D) 698 

September-October-November (SON). 699 
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 701 

Figure 2.  A)-F):  Scatter-density regressions of global monthly mean GCMK
 (y-axis) and 702 

CERESK (x-axis), with the CERES kernel identifier shown at the top of each sub-panel. “m” = 703 

slope; “B0” = y-intercept.  The color scale indicates the percentage of regression points that 704 

fall within a 100 × 100 sample grid centered on the plotted point. 705 
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 707 

Figure 3.  A) Mean annual bias of the CAM5 albedo change kernel emulated with the ANISO 708 

analytical model; B) Mean annual bias of the CAM5 albedo change kernel emulated with the 709 

BO18 parameterization; C) Mean annual bias of the ECHAM6 albedo change kernel emulated 710 

with the ANISO analytical model; D) Mean annual bias of the ECHAM6 albedo change 711 

kernel emulated with the BO18 parameterization 712 
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714 

Figure 4.  A)-D):  Scatter-density regressions of GCMK  (y-axis) and GCMK   emulated with the 715 

ANISO model and BO18 parameterization (x-axis); “m” = slope; “B0” = y-intercept.  The 716 

color scale indicates the percentage of regression points that fall within a 100 × 100 sample 717 

grid centered on the plotted point. 718 
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